Second order deformations of group commuting squares and Hadamard matrices

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hadamard matrices of order 32

Two Hadamard matrices are considered equivalent if one is obtained from the other by a sequence of operations involving row or column permutations or negations. We complete the classification of Hadamard matrices of order 32. It turns out that there are exactly 13710027 such matrices up to equivalence. AMS Subject Classification: 05B20, 05B05, 05B30.

متن کامل

Group actions on Hadamard matrices

Faculty of Arts Mathematics Department Master of Literature by Padraig Ó Catháin Hadamard matrices are an important item of study in combinatorial design theory. In this thesis, we explore the theory of cocyclic development of Hadamard matrices in terms of regular group actions on the expanded design. To this end a general theory of both group development and cocyclic development is formulated....

متن کامل

Hadamard matrices of order 764 exist

Two Hadamard matrices of order 764 of Goethals– Seidel type are constructed. Recall that a Hadamard matrix of order m is a {±1}-matrix A of size m × m such that AA T = mI m , where T denotes the transpose and I m the identity matrix. We refer the reader to one of [2, 4] for the survey of known results about Hadamard matrices. In our previous note [1], written about 13 years ago, we listed 17 in...

متن کامل

Cryptographic Boolean functions via group Hadamard matrices

For any integers n m n m n we construct a set of boolean functions on Vm say ff z fn z g which has the following important cryptographic properties i any nonzero linear combination of the functions is balanced ii the nonlinearity of any nonzero linear combination of the functions is at least m n iii any nonzero linear combination of the functions satis es the strict avalanche cri terion iv the ...

متن کامل

commuting and non -commuting graphs of finit groups

فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2020

ISSN: 0002-9939,1088-6826

DOI: 10.1090/proc/15025